Math 9 Honours Section 6.6b Solving Equations with Trigonometry

1. Evaluate each expression without a calculator:

a) cos 90° + 5 sin 270°	b) 5 sin 180° + 4 cos 0°	c) sin 90° – 3 cos 180°
d) $6\cos(-270^\circ) + \sin(-90^\circ)$	e)3sin45° – 4cos150°	f) $-2\sin(225^\circ) + \frac{2}{3}\tan(135^\circ)$
g) 2 tan ² 120° + 3 sin ² 60°	h) $-3\cos^2 150^\circ - 3\sin^2 (-225^\circ)$	i) $-3\sin^2 300^\circ - 3\cos^2 (-60^\circ)$

2. Solve for θ between $0^{\circ} \le \theta \le 360^{\circ}$

$b)\sqrt{2}\cos\theta + 1 = 0$	$c)\sqrt{2}\sin\theta - 1 = 0$
e) $\tan \theta - \sqrt{3} = 0$	$f) 2 \tan \theta + 2\sqrt{3} = 0$
	b) $\sqrt{2}\cos\theta + 1 = 0$ e) $\tan\theta - \sqrt{3} = 0$

$g) \sin^2 \theta - 1 = 0$	$h) 4 \sin^2 \theta - 1 = 0$	$i) 4\cos^2\theta - 3 = 0$

3. Solve for θ between $0^{\circ} \le \theta \le 360^{\circ}$

a) $\sin \theta = \cos \theta$	b) $2\sin^2\theta = \sin\theta$
c) $2\sin^2\theta = \sin\theta + 1$	d) $2\sin^2\theta = \sin\theta + 5$
$e) 2\cos^2\theta + 7\cos\theta = 4$	$f) 2\sin^2\theta - 11\sin\theta = 6$
$g)\left(4\sin^2-1\right)\left(\sin^2\theta-1\right)=0$	$h)\cos^2\theta - 3\sin\theta + 1 = 0$

 $j) 7 + 4\cos\theta - 4\sin^2\theta = 0$

$$k) 2\sin^3\theta - 2\sin^2\theta - \sin\theta + 1 = 0$$

 $4\cos^4\theta + 3\cos^2\theta = 1$

4. If
$$\cos \theta = \frac{\sqrt{5}}{6}$$
, then what is the exact value of $\sin \theta$ and $\tan \theta$

- 5. If $\tan \theta = 2$ and θ is in quadrant III, then what is the exact value of $\sin \theta$ and $\cos \theta$?
- 6. Given $0^{\circ} \le \theta \le 360^{\circ}$, if $\sin \theta = k$ and there is only one solution, what are the possible value(s) of k?
- 7. Given $0^{\circ} \le \theta \le 360^{\circ}$, if $\sin \theta = k$ and there are three solutions, what are the possible value(s) of k?

8. Suppose $A + B = 180^{\circ}$, then which of the following statements are true?

i)
$$\sin A = \sin B$$

ii)
$$\cos A = \cos B$$

iii)
$$\tan A = -\tan B$$

9. If $0^{\circ} \le \theta \le 360^{\circ}$ then what is the minimum value and maximum value of the expression: $2\sin^2\theta + \cos^2\theta + 1$

10. How many solutions will the following equation have? $\sin \theta \times \cos \theta \times \tan \theta = 0$

11. Given that $x\cos\theta + y\sin\theta = 4$ and $x\sin\theta - y\cos\theta = 3$, then which of the following statements is correct?

i)
$$x + y = 5$$

ii)
$$x + y = 7$$

iii)
$$x^2 + y^2 = 5$$

i)
$$x + y = 5$$
 ii) $x + y = 7$ iii) $x^2 + y^2 = 5$ iv) $x^2 + y^2 = 25$

12. If $0^{\circ} \le \theta \le 2016^{\circ}$, how many angles satisfy the equation: $\sin^2 2016^{\circ} + \sin^2 \theta = 1_{\text{(CNML 2016)}}$.